ADAS&ME : MID-TERM REVIEW
USE CASE B

Emmanuel DOUCET
VEDECOM - VEH08

Kevin NGUYEN
Valeo - CDA

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 688900
Electric Vehicle range anxiety

Anxiety: “A feeling of worry, nervousness, or unease about something with an uncertain outcome.”[1]

Root causes:
1. EV Range
 a. Limited vs ICE vehicles (at least for now)
 b. Mistrust to prediction system / Lack of experience with EVs behaviour
2. Refueling issue
 a. Charging stations network density
 b. Charging speed

Consequences:
→ Hinders EVs acceptance

1. **Range Anxiety Mitigation**
 - Range *sufficient* for trip
 - Driver anxious because of mistrust to system
 - Bring driver back to neutral state by adapting range information

2. **Range Incident Mitigation**
 - Range *insufficient* for trip
 - Support driver on recharging planification
 - Propose automation to optimize “lost” time

3. **Range Critical Protection**
 - Range is *critical*, imminent vehicle shutdown
 - Ensure vehicle’s withdrawal from traffic before immobilisation
 - Guarantee vehicle’s and driver’s safety
Targeted states

Targeted driver states:

- Emotions
- Anxiety
- Range Anxiety

Facial Expressions

Physiological reaction

Vocal Expressions

Gaze Behavior & Vehicle data

Anxiety

Range Anxiety
Two-fold process

➔ **April 2018**: small pool of participants, induction of neutral, happiness and anxiety feelings in open-road scenarios

 Objectives: Assess the emotions induction protocol
 Acquire data to support first phases of development

➔ **September 2018**: 24 participants, implementation of scenarios

➔ **December 2018**: 20 participants, data collection

Results of the first data collection campaign:

- 3TB data collected
- Range anxiety induction is not easily performed

Results of the second data collection campaign:

- 5TB data collected
- Range anxiety induction done
- HMI to be improved
On board sensors

Smarteye Pro: 2 cameras system
- Facial expressions
- Gaze behaviour

Shure VP82 Microphones
- Vocal emotions

Valeo Radar
- Heart rate
- Respiration rate

Empatica E4*
- Galvanic skin response
Demonstrators

Objectives
- Inducing range anxiety
- Experimenting on open roads with naive subjects in an autonomous prototype

Wizard of Oz Renault ZOE
- Joystick controlled vehicle
- Allows accurate study of driver behaviour in an automated driving context
- Vehicle dedicated to ADAS&Me
- Certification for open-road experimentation (France) in progress
1. Range Anxiety Mitigation

- Temperature: ~2 °C
- Range: ~100 km (80%)

2. Range Incident Mitigation

- Temperature: ~5 °C
- Range: ~30 km (25%) ETA: 60 km

- Battery too low.

3. Range Critical Protection

- Temperature: ~5 °C
- Range: ~5 km (8%) ETA: 45 km

Starting autonomous mode, please let go steering wheel and pedals.
Final Evaluation Plans

Driver states: Anxiety

Sample: 24 drivers | 25-40 years-old | > 5 years driving experience | No EV experience

Design: Only one session | Within-subjects design: all subjects perform all test cases

Procedure: @ Public roads Santa Oliva + IDIADA’s Proving Ground

- **Briefing**
 - @ Test-track

- **Familiarization**
 - @ Test-track

- **Public road**
 - **1st Test case:**
 - Destination is entered
 - Goes to public road
 - Range decreases dramatically
 - Anxiety recognition
 - Mitigation messages
 - **2nd Test case:**
 - Range continues decreasing (range not enough)
 - Re-routing messages (to IDIADA)
 - Automated driving once in IDIADA

- **Test-track**
 - **3rd Test case:**
 - Automated driving
 - Warnings are ignored
 - Safe stop

- **Debriefing**
Conclusion

Scope and scenario: Done
Range Anxiety architecture: On-going
Demonstrators: On-going
Data collection: On-going
HMI specifications: Done
HMI development: On-going
MQTT Communication: On-going

Next steps
Anxiety algorithms: January 2019
HMI development: February 2019
DSS: April 2019
Demonstrator: June 2018
Final review: August 2019